Determine the Density and Making Sense of Density

- See pages 15-16 in your text for explanations of characteristic properties and pages 26-27 for an explanation of density.

Word Bank: Words you can use in your hypothesis and conclusions.

- accurate
- accurate to the nearest...
- characteristic property
- substance
- change
- volume
- mass
- density (g/cm3)
- grams (g)
- milliliters (ml)
- cubic centimeters (cm3)
- water displacement
- unknown substance
- calculate
- measure
- graduated cylinder
- scale/balance
- formula
Determine the Density and Making Sense of Density

Finding the Density:

1) Find the **mass** of the object.
 a) **mass**: the amount of matter in an object. For our purposes, this is the “weight” of the object.
 b) Use a **scale/balance** to find the **mass** of the object (weigh it).

2) Find the **volume** of the object.
 a) Use a graduated cylinder and water to determine how many milliliters the water rises. Then convert ml to cm3 (1 ml = 1 cm3).
 b) OR you can use geometry to solve for volume. Measure the length, height, and width. Then multiply these three dimensions together ($V = L \times W \times H$).

3) Then use the **density formula** to calculate the **density**.
 a) $D = \frac{m}{V}$
 b) **Density**: the amount of matter in a given space.
 c) This means that we can get density by mass ÷ volume.
 d) For example,
 An object that is 10 grams and has a volume of 5 cm3 is calculated as 10 grams ÷ 5 cm3. The answer is 2 g/ cm3.
 e) g/ cm3 is a standard unit for density.

4) Recap: an example
 1) mass = 10 g
 2) volume = 5 cm3
 3) $D = \frac{m}{V}$
 4) $D = 10 ÷ 5 = 2$
 5) $D = 2$ g/ cm3